Elastic properties of GaN nanowires: revealing the influence of planar defects on young's modulus at nanoscale.

نویسندگان

  • Sheng Dai
  • Jiong Zhao
  • Mo-rigen He
  • Xiaoguang Wang
  • Jingchun Wan
  • Zhiwei Shan
  • Jing Zhu
چکیده

The elastic properties of gallium nitride (GaN) nanowires with different structures were investigated by in situ electron microscopy in this work. The electric-field-induced resonance method was utilized to reveal that the single crystalline GaN nanowires, along [120] direction, had the similar Young's modulus as the bulk value at the diameter ranging 92-110 nm. Meanwhile, the elastic behavior of the obtuse-angle twin (OT) GaN nanowires was disclosed both by the in situ SEM resonance technique and in situ transmission electron microscopy tensile test for the first time. Our results showed that the average Young's modulus of these OT nanowires was greatly decreased to about 66 GPa and indicated no size dependence at the diameter ranging 98-171 nm. A quantitative explanation for this phenomenon is proposed based on the rules of mixtures in classical mechanics. It is revealed that the elastic modulus of one-dimensional nanomaterials is dependent on the relative orientations and the volume fractions of the planar defects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dependence of Young's modulus on the sodium content within the structural tunnels of a one-dimensional Na-ion battery cathode.

We report on the Young's modulus (YM) of single-crystalline Na4Mn9O18 (or Na0.44MnO2) nanowires (NWs), which have shown promise as reversible sodium-ion (Na(+)) intercalation cathodes with high capacity and excellent cyclability. In addition, acid treatment of this material yielded proton stabilized Na(0.44-y)MnO2 (y ∼ 0.23) NWs with a 74% increase in the YM. The tight correlation between YM an...

متن کامل

Effect of growth orientation and diameter on the elasticity of GaN nanowires. A combined in situ TEM and atomistic modeling investigation.

We characterized the elastic properties of GaN nanowires grown along different crystallographic orientations. In situ transmission electron microscopy tensile tests were conducted using a MEMS-based nanoscale testing system. Complementary atomistic simulations were performed using density functional theory and molecular dynamics. Our work establishes that elasticity size dependence is limited t...

متن کامل

Study of Stone-wales Defect on Elastic Properties of Single-layer Graphene Sheets by an Atomistic based Finite Element Model

In this paper, an atomistic based finite element model is developed to investigate the influence of topological defects on mechanical properties of graphene. The general in-plane stiffness matrix of the hexagonal network structure of graphene is found. Effective elastic modulus of a carbon ring is determined from the equivalence of molecular potential energy related to stretch and angular defor...

متن کامل

Beat phenomena in metal nanowires, and their implications for resonance-based elastic property measurements.

The elastic properties of 1D nanostructures such as nanowires are often measured experimentally through actuation of nanowires at their resonance frequency, and then relating the resonance frequency to the elastic stiffness using the elementary beam theory. In the present work, we utilize large scale molecular dynamics simulations to report a novel beat phenomenon in [110] oriented Ag nanowires...

متن کامل

Synthesis of Serrated GaN Nanowires for Hydrogen Gas Sensors Applications by Plasma-Assisted Vapor Phase Deposition Method

Nowadays, the semiconductor nanowires (NWs) typically used in hydrogen gas sensors. Gallium nitride (GaN) with a wide band gap of 3.4 eV, is one of the best semiconductors for this function. NWs surface roughness have important role in gas sensors performance. In this research, GaN NWs have been synthesized on Si substrate by plasma-assisted vapor phase deposition at different deposition time, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nano letters

دوره 15 1  شماره 

صفحات  -

تاریخ انتشار 2015